268 research outputs found

    Early Intervention and Evidence-Based Policy and Practice: Framing and taming

    Get PDF
    In this article, we highlight some critical matters in the way that an issue is framed as a problem in policymaking and the consequent means of taming that problem, in focussing on the use and implications of neuroscientific discourse of brain claims in early intervention policy and practice. We draw on three sets of analyses: of the contradictory set of motifs framing the state of ‘evidence’ of what works in intervention in the early years; of the (mis)use of neuroscientific discourse to frame deficient parenting as causing inequalities and support particular policy directions; and of the way that early years practitioners adopt brain claims to tame the problem of deficient parenting. We argue that using expedient brain claims as a framing and taming justification is entrenching gendered and classed understandings and inequalities

    Present and Future CP Measurements

    Get PDF
    We review theoretical and experimental results on CP violation summarizing the discussions in the working group on CP violation at the UK phenomenology workshop 2000 in Durham.Comment: 104 pages, Latex, to appear in Journal of Physics

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Galacto-Oligosaccharides : production, properties, applications, and significance as prebiotics

    Get PDF
    Galacto-oligosaccharides (GOS) have now been definitely established as prebiotic ingredients after in vitro and animal and human in vivo studies. Currently, GOS are produced by glycoside hydrolases (GH) using lactose as substrate. Converting lactose into GOS by GH results in mixtures containing GOS of different degrees of polymerization (DP), unreacted lactose, and monomeric sugars (glucose and galactose). Recent and future developments in the production of GOS aim at delivering purer and more efficient mixtures. To produce high-GOS-content mixtures, GH should not only have good ability to catalyze the transgalactosylation reaction relative to hydrolysis, but also have low affinity for the GOS formed relative to the affinity for lactose. In this article, several microbial GH, proposed for the synthesis of GOS, are hierarchized according to the referred performance indicators. In addition, strategies for process improvement are discussed. Besides the differences in purity of GOS mixtures, differences in the position of the glycosidic linkages occur, because different enzymes have different regiochemical selectivity. Depending on oligosaccharide composition, GOS products will vary in terms of prebiotic activity, as well as other physiological effects. This review focuses on GOS production from synthesis to purification processes. Physicochemical characteristics, physiological effects, and applications of these prebiotic ingredients are summarized. Regulatory aspects of GOS-containing food products are also highlighted with emphasis on the current process of health claims evaluation in Europe.Agência da Inovação-Progama IDEIA (Portugal)Fundação para a Ciência e a Tecnologia (FCT

    The West Midlands ActiVe lifestyle and healthy Eating in School children (WAVES) study: a cluster randomised controlled trial testing the clinical effectiveness and cost-effectiveness of a multifaceted obesity prevention intervention programme targeted at children aged 6-7 years.

    Get PDF
    BACKGROUND: Systematic reviews suggest that school-based interventions can be effective in preventing childhood obesity, but better-designed trials are needed that consider costs, process, equity, potential harms and longer-term outcomes. OBJECTIVE: To assess the clinical effectiveness and cost-effectiveness of the WAVES (West Midlands ActiVe lifestyle and healthy Eating in School children) study intervention, compared with usual practice, in preventing obesity among primary school children. DESIGN: A cluster randomised controlled trial, split across two groups, which were randomised using a blocked balancing algorithm. Schools/participants could not be blinded to trial arm. Measurement staff were blind to allocation arm as far as possible. SETTING: Primary schools, West Midlands, UK. PARTICIPANTS: Schools within a 35-mile radius of the study centre and all year 1 pupils (aged 5-6 years) were eligible. Schools with a higher proportion of pupils from minority ethnic populations were oversampled to enable subgroup analyses. INTERVENTIONS: The 12-month intervention encouraged healthy eating/physical activity (PA) by (1) helping teachers to provide 30 minutes of additional daily PA, (2) promoting 'Villa Vitality' (interactive healthy lifestyles learning, in an inspirational setting), (3) running school-based healthy cooking skills/education workshops for parents and children and (4) highlighting information to families with regard to local PA opportunities. MAIN OUTCOME MEASURES: The primary outcomes were the difference in body mass index z-scores (BMI-zs) between arms (adjusted for baseline body mass index) at 3 and 18 months post intervention (clinical outcome), and cost per quality-adjusted life-year (QALY) (cost-effectiveness outcome). The secondary outcomes were further anthropometric, dietary, PA and psychological measurements, and the difference in BMI-z between arms at 27 months post intervention in a subset of schools. RESULTS: Two groups of schools were randomised: 27 in 2011 (n = 650 pupils) [group 1 (G1)] and another 27 in 2012 (n = 817 pupils) [group 2 (G2)]. Primary outcome data were available at first follow-up (n = 1249 pupils) and second follow-up (n = 1145 pupils) from 53 schools. The mean difference (MD) in BMI-z between the control and intervention arms was -0.075 [95% confidence interval (CI) -0.183 to 0.033] and -0.027 (95% CI -0.137 to 0.083) at 3 and 18 months post intervention, respectively. The main analyses showed no evidence of between-arm differences for any secondary outcomes. Third follow-up included data on 467 pupils from 27 G1 schools, and showed a statistically significant difference in BMI-z (MD -0.20, 95% CI -0.40 to -0.01). The mean cost of the intervention was £266.35 per consented child (£155.53 per child receiving the intervention). The incremental cost-effectiveness ratio associated with the base case was £46,083 per QALY (best case £26,804 per QALY), suggesting that the intervention was not cost-effective. LIMITATIONS: The presence of baseline primary outcome imbalance between the arms, and interschool variation in fidelity of intervention delivery. CONCLUSIONS: The primary analyses show no evidence of clinical effectiveness or cost-effectiveness of the WAVES study intervention. A post hoc analysis, driven by findings at third follow-up, suggests a possible intervention effect, which could have been attenuated by baseline imbalances. There was no evidence of an intervention effect on measures of diet or PA and no evidence of harm. FUTURE WORK: A realist evidence synthesis could provide insights into contextual factors and strategies for future interventions. School-based interventions need to be integrated within a wider societal framework and supported by upstream interventions. TRIAL REGISTRATION: Current Controlled Trials ISRCTN97000586. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full inHealth Technology Assessment; Vol. 22, No. 8. See the NIHR Journals Library website for further project information

    Prebiotics from Marine Macroalgae for Human and Animal Health Applications

    Get PDF
    The marine environment is an untapped source of bioactive compounds. Specifically, marine macroalgae (seaweeds) are rich in polysaccharides that could potentially be exploited as prebiotic functional ingredients for both human and animal health applications. Prebiotics are non-digestible, selectively fermented compounds that stimulate the growth and/or activity of beneficial gut microbiota which, in turn, confer health benefits on the host. This review will introduce the concept and potential applications of prebiotics, followed by an outline of the chemistry of seaweed polysaccharides. Their potential for use as prebiotics for both humans and animals will be highlighted by reviewing data from both in vitro and in vivo studies conducted to date

    A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq

    Get PDF
    The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5′-side of the seed, suggesting they may form a component of the bacterial sRNA pathway. Indeed, eliminating SMc01113/YbeY expression in Sinorhizobium meliloti produces symbiotic and physiological phenotypes strikingly similar to those of the hfq mutant. Hfq, an RNA chaperone, is central to bacterial sRNA-pathway. We evaluated the expression of 13 target genes in the smc01113 and hfq mutants. Further, we predicted the sRNAs that may potentially target these genes, and evaluated the accumulation of nine sRNAs in WT and smc01113 and hfq mutants. Similar to hfq, smc01113 regulates the accumulation of sRNAs as well as the target mRNAs. AGOs are central components of the eukaryotic sRNA machinery and conceptual parallels between the prokaryotic and eukaryotic sRNA pathways have long been drawn. Our study provides the first line of evidence for such conceptual parallels. Furthermore, our investigation gives insights into the sRNA-mediated regulation of stress adaptation in S. meliloti

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de Planétologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore